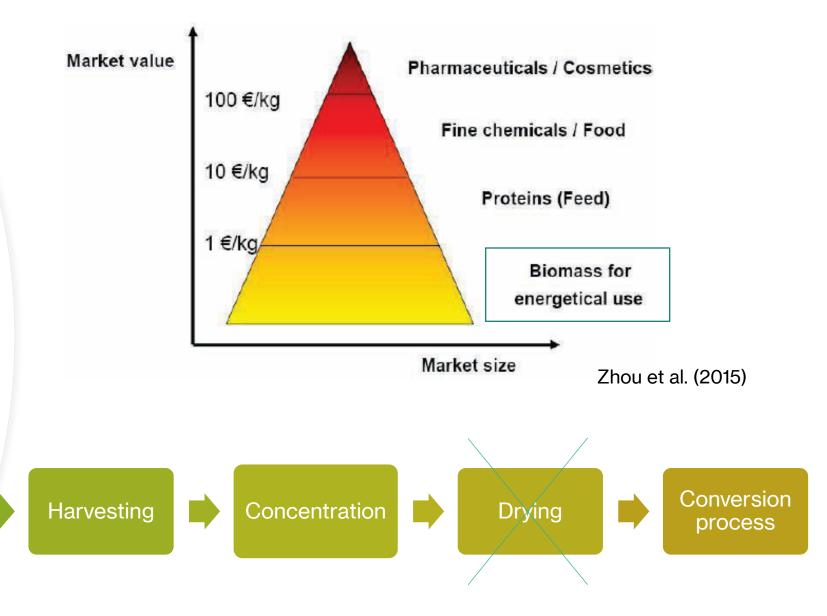
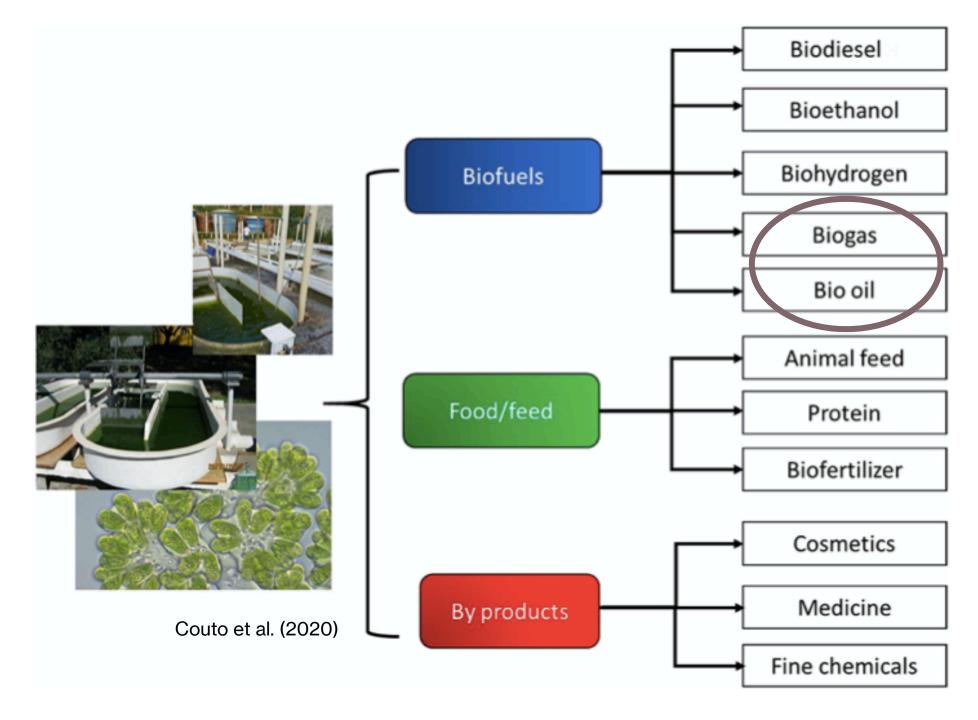


Microalgae

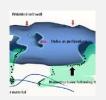

Energy valorization routes


Wastewater grown microalgae biomass for energy purposes

 Biomass composition as a function of specie, growth conditions...

Production

- Low lipid content
- Less noble uses


Microalgae anaerobic digestion - challenges

Biomass	Methane (m ³ /kg VS)		
Solid waste	0.2-0.53		
Vegetables waste	0.42		
Microalgae	0.26		
Wood waste	0.20		
Corn waste	0.31		

Kwietniewska and Tys (2014)

Low C/N ratio: co-digestion

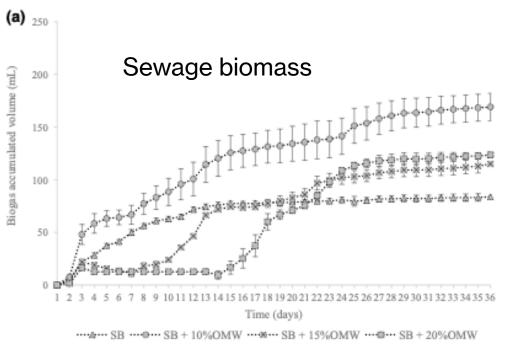
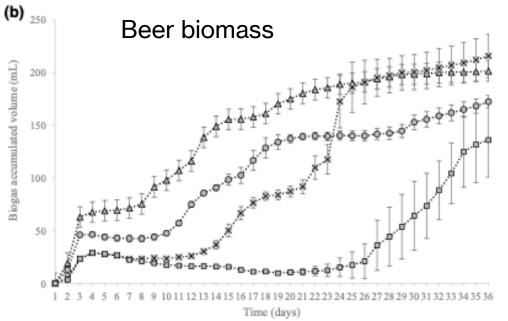

Cell wall: pre-treatment

Table 4Effect of physical and chemical pre-treatment of wastewater grown microalgae on methane yield during anaerobic digestion (AD).

Pre-treatment method	Operational conditions	Microalgae, cultivation medium	Methane yield (m³ CH ₄ /kg VS)	Yield improvement	References
Physical, ultrasound	67 MJ/kg TS, 20 kHz	Scenedesmus, Chlorella, domestic sewage	0.169	33%	Passos et al., 2014a
Physical, microwave	110,500 kJ/kg VS, 900 W (output power), 3 min (exposure time)	Monoraphidium sp., Stigeoclonium sp., Scenedesmus sp., Nitzchia sp. domestic sewage	0.20	60%	Passos et al., 2014c
Physical, microwave	2450 MHz, 700 W (output power), 840 s (exposure time)	Microalgal bacterial flocs, pikeperch aquaculture wastewater	0.19	7%	Van Den Hende et al., 2015
Chemical, acid	Addition of HNO ₃ to pH 6.3	Microalgal bacterial flocs, Pikeperch aquaculture wastewater	0.17	34%	Van Den Hende et al., 2015
Chemical, lipid extraction	Addition of H ₂ SO ₄ + lipid extraction	Scenedesmus sp., meat processing industry wastewater	2.4ª	5 times	Assemany et al., 2016
Chemical, lipid extraction	Addition of H ₂ SO ₄ + lipid extraction	Scenedesmus sp. Chlorella vulgaris, domestic sewage	2.6ª	10 times	Assemany et al., 2018a, 2018b
Chemical, alkaline	Addition of 4% CaO	Chlorella sp. and Scenedesmus sp., synthetic wastewater	0.282	19.8%	Solé-Bundó et al., 2017a
Chemical, alkaline	Addition of 10% CaO	Chlorella sp. and Scenedesmus sp., synthetic wastewater	0.259	14.9%	Solé-Bundó et al., 2017a
Chemical, thermo-alkaline	Addition of 10% CaO + 72 °C	Chlorella sp., Monoraphidium sp. and diatoms, domestic sewage	0.287	9%	Solé-Bundó et al., 2017b


a Biogas yield.

Choudhary et al. (2020)

SB+10%OMW: 0.10 m³ CH₄/kg VS

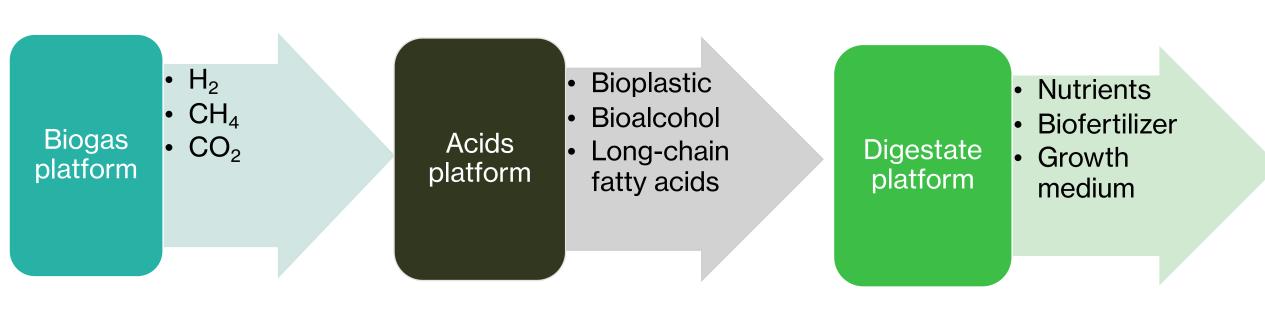
SB: $0.06 \text{ m}^3 \text{ CH}_4/\text{kg VS}$

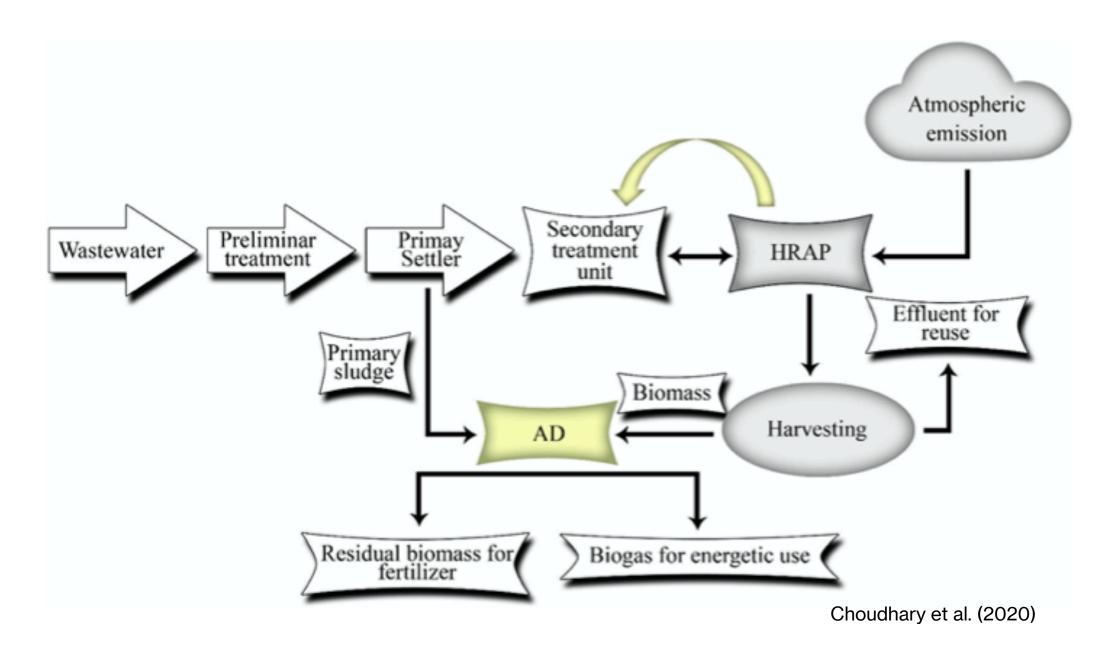
BB: $0.16 \text{ m}^3 \text{ CH}_4/\text{kg VS}$

 $BB + 10\% \ OMW: 0.13 \ m^3 \ CH_4/kg \ VS$

Less energy demand pre-treatment methods

Anaerobic digestion: next steps


Reactors designed for algal biomass digestion


Full scale

Anaerobic digestion as a biorefinery

new routes, new by-products

Anaerobic digestion as an industrial process

Hydrothermal carbonization and liquefaction

High ash content

N in the bio-oil

Catalysts

Subproducts valorization

Table 1Comparative performance of different catalysts for the production of biocrude obtained from HTL of algal biomass grown under varied nutrient medium.

Catalyst	Reaction conditions	Microalgae	Nutrient medium/wastewater	Biocrude yield (%) & HHV (MJ/kg)	Reference
K ₂ CO ₃	T= 200 (°C), P= 2.5 (MPa N ₂), t= 20 (min)	&Phormidium sp.	Artificial medium	42.0 & 33.10	Choudhary et al., 2020
		Chlorella &Phormidium	Wastewater		Naaz et al., 2019
Cerium oxide (CeO ₂)	T= 250 (°C); t= 30 (min)	Spirulina Platensis	Artificial medium	26.0 & 27.15	Kandasamy et al., 2020
CaO	T= 320 (°C); t= 10 (min)	Nannochloropsis gaditana	Commercial source	49.73 & 31.47	Sánchez-Bayo et al., 2020
Pt/C	$T=350$ (°C), $P=0.3$ (MPa H_2), $t=30$ (min)	Chlorella sp.	Commercial source	37.09 & 29.73	Xu et al., 2019
ZrO ₂ /SO ₄ ² , HZSM-5, MgO/MCM-41 KtB	T= 350 (°C); t= 60 (min)	Dunaliella tertiolecta	Commercial source	28.0 & 33.24 30.0 & 33.67 35.0 & 33.17 49.0 & 32.36	Chen et al., 2015
K ₂ CO ₃ HZSM-5	T=260-320 (°C); t= 10-40 (min)	Chlorella vulgaris Spirulina Raceway biomass	Anaerobic digestion effluent (ADE) grown (5% conc.)	41.2 27.7 31.4	(Liang et al., 2015)
Ru/C	T= 320-400 (°C); t= 20 (min)	Nannochloropsis sp.	Commercial source	45.0 & 38.92	(Xu and Savage, 2015)
Catalyst	Reaction conditions	Microalgae	Nutrient medium/wastewater	Biocrude yield (%) & HHV (MJ/kg)	Reference
Co/Mo/Al ₂ O ₃ Ni/Al/Al ₂ O ₃ Pt/Al/Al ₂ O ₃	T= 350 (°C); t= 60 (min)	Chlorella vulgaris Nannochloropsis occulta	Effluent from wastewater treatment plant (WWTP)	38.7 & 39.7 30.0 & 42.0 38.9 & 38.2	(Roberts et al., 2013)
Non-catalytic	T=325 (°C), t=45 (min); P= 12 (MPa)	Monoraphidium sp. + domestic sewage sludge (DSS)	Sewage treatment plant effluent	39.38 & 39.47	Mishra and Mohanty, 2020
Non-catalytic	T= 260-320(°C), t=45 (min); P= 12 (MPa)	Nannochloropsis sp. and Sargassum sp.,	Fish Park aquarium	39.05-54.11 & 35.92-37.88 3.11-9.49 & 33.63-35.23	He et al., 2020
Non-catalytic	T= 325-350 (°C), P=20 MPa; t= 3-9 (min)	Galdieria sulphuraria (monoculture & polyculture)	Municipal wastewater	28.1 & 39	Cheng et al., 2019
Non-catalytic	T= 275-350 (°C), t = 30 (min); P= 0.6-0.8 (MPa)	Tetraselmis	Sea-water	26.3-31.0 & 29.5-33.3	Han et al., 2019
Non-catalytic	T= 300 (°C); P= 9 MPa; t= 30 (min)	Kirchneriella sp.	Commercial source	45.5 & 37.52	Dandamudi et al., 2019
Non-catalytic	T= 150-300 (°C); t= 60 (min)	Algal consortia (Pediastrum sp., Micractinium sp., and	Effluent from WWT HRAPs	24.89 & 38.9	(Mehrabadi et al., 2017)

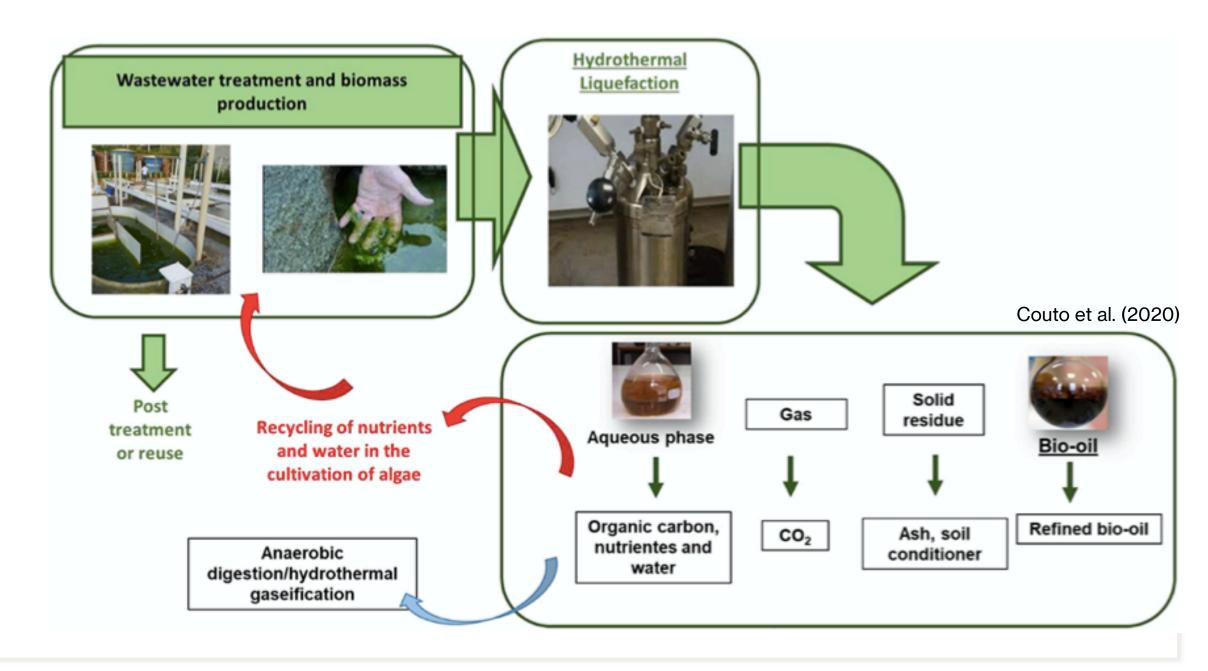
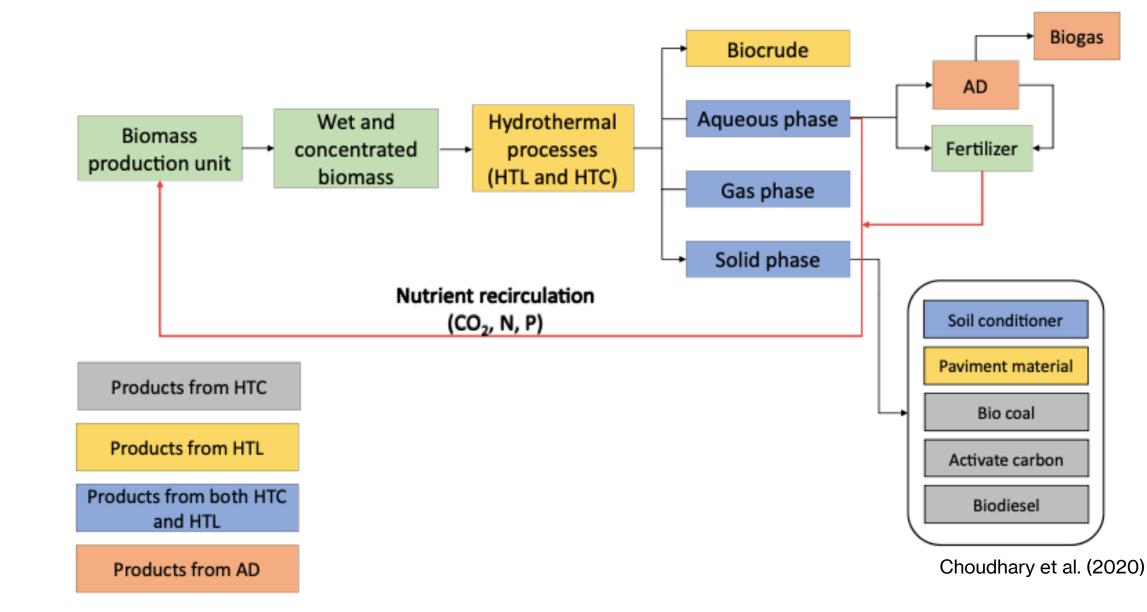



Table 2
Studies on hydrothermal carbonization (HTC) of synthetic media grown algal biomass.

Biomass	Reaction conditions	Catalyst	HHV (MJ/kg)	Yield (%)	References
Aphanizomenon flos-aquae – char	213 °C; 120 min	Citric acid		16.0	Heilmann et al., 2010
Synechocystis sp char	213 °C; 120 min	Citric acid	-	18.0	
Spirulina sp char	213 °C; 180 min	Oxalic acid	-	27.0	
Chlorella sp char	200 °C; 180 min	Oxalic acid	-	39.5	
Dunaliella salina - char	200 °C; 180 min	Oxalic or acid citric	30.5	36.0	
Chlamydomonas reinhardtii - raw biomass	-	-	18.0	-	Levine et al., 2013
Chlamydomonas reinhardtii - char	200 °C; 120 min	Oxalic acid	31.6	39.0	
Nannochloropsis oculata - raw biomass	-	-	20.6	-	
Nannochloropsis oculata - char	180 °C; 15 min	-	26.3	51.0	
Nannochloropsis oculata - char	180 °C; 30 min	-	26.9	49.0	
Nannochloropsis oculata - char	190 °C; 15 min	-	26.8	51.0	
Nannochloropsis oculata - char	190 °C; 30 min	-	27.1	47.0	
Nannochloropsis oculata - char	200 °C; 15 min	-	27.3	47.0	Levine et al., 2013
Nannochloropsis oculata - char	200 °C; 30 min	-	27.3	44.0	
Nannochloropsis oculata - char	210 °C; 15 min	-	28.0	45.0	
Nannochloropsis oculata - char	210 °C; 30 min	-	28.4	41.0	Bach et al., 2013
Chlorella vulgaris - raw biomass	_	-	22.0 ^{daf}	-	
Chlorella vulgaris - char	160 °C; 10 min	-	23.8 ^{daf}	61.7	
Chlorella vulgaris - char	170 °C; 10 min	-	24.2 ^{daf}	~59.0	
Chlorella vulgaris - char	180 °C; 10 min	-	24.5 ^{daf}	52.6	
Chlorella vulgaris - char	170 °C; 5 min	-	23.6 ^{daf}	62.9	
Chlorella vulgaris – char	170 °C; 30 min	-	26.0 ^{daf}	51.8	
Chlorella vulgaris - raw biomass	_		21.1		Ekpo et al., 2016
Chlorella vulgaris - char	250 °C; 60 min	_	14.4	~15.0	
Lipid extracted Chlorella vulgaris – raw biomass	_	_	-	(–	Lee et al., 2018
Lipid extracted Chlorella vulgaris - char	180 °C; 30 min	-	~25.00	74.53	
Lipid extracted Chlorella vulgaris - char	200 °C; 30 min	-	~27.00	72.56	
Lipid extracted Chlorella vulgaris - char	240 °C; 30 min	-	~23.00	51.84	Lee et al., 2018
Spirulina platensis – raw biomass	190 °C; 60 min	-	21.64	-	Zhao et al., 2019
Spirulina platensis – char	190 °C; 60 min	-	29.63	~30.00	
Chlorella vulgaris - raw biomass	190 °C; 60 min	-	27.00	-	
Chlorella vulgaris - char	190 °C; 60 min	-	20.79	~37.00	13

 $^{^{\}rm daf}\,$ Dry-ash-free-basis; - indicates that the data was not available.

Choudhary et al. (2020)

Paula Assemany

Environmental Engineering Department Engineering School Federal University of Lavras, Brazil

paula_assemany@ufla.br paula_assemany@hotmail.com

Thank you!